# Chapitre 1



# Variables caractéristiques du transfert d'oxygène

Les facteurs de conception et de fonctionnement influençant le transfert d'oxygène en bassins d'aération équipés de diffuseurs fines bulles sont rapportés dans le tableau 1 et sur les figures 1 et 2 (*cf.* pages 16 et 18).

# Caractérisation des performances d'oxygénation des systèmes d'insufflation d'air fines bulles

Les bases de données requises pour l'analyse présentée ici

réunissent les résultats des différents essais de réoxygénation d'eau claire effectués par les équipes du Cemagref sur des bassins équipés de systèmes d'insufflation d'air. Ces essais ont été réalisés selon une procédure intégrée dans la norme prEN 12255-15 (2004), les bassins étant équipés de diffuseurs à membrane EPDM (disques, tubes ou plaques). Afin de comparer les dispositifs entre eux, les résultats des mesures de performances d'oxygénation en eau claire sont exprimés dans les conditions standard, définies comme suit :

- 1 concentration en oxygène dissous nulle ;
- etempérature de l'eau = 20 °C ;
- 8 pression atmosphérique = 1 013 hPa.

Les performances d'oxygénation sont présentées en termes de :

➤ coefficient de transfert d'oxygène à 20 °C  $(k_{L}a_{20})$ , représentatif de la vitesse de dissolution de l'oxygène gazeux dans la phase liquide.

> apport horaire standard (AHs), quantité d'oxygène transféré par heure

(équation 1) :

 $AHs = k_{L}a_{20} \cdot Cs \cdot V$ 

avec :

•  $k_{L}a_{20}$  : coefficient de transfert d'oxygène à 20 °C (h<sup>-1</sup>)

- Cs : concentration de saturation en oxygène à 20 °C et à (1013 +  $\Delta$ P) hPa (mg  $\cdot$  L<sup>-1</sup>)
- $\Delta P$  : surpression due à la colonne d'eau (hPa)
- V : volume de liquide (m<sup>3</sup>)

| Facteur                                                             | Symbole                     | Unité                             |
|---------------------------------------------------------------------|-----------------------------|-----------------------------------|
| Surface du bassin                                                   | S                           | m²                                |
| Surface totale des membranes (cf. calcul en annexe 2)               | S <sub>p</sub>              | m²                                |
| Surface couverte par les modules de diffuseurs (Surface aérée)      | S                           | m²                                |
| Hauteur d'eau                                                       | Н                           | m                                 |
| Hauteur d'immersion                                                 | h                           | m                                 |
| Largeur du chenal                                                   | Ľ                           | m                                 |
| Angle entre l'axe des agitateurs et le premier module de diffuseurs | Ang <sup>1</sup>            | -                                 |
| Accélération de la pesanteur                                        | g                           | ${\rm m}\cdot{\rm s}^{-2}$        |
| Viscosité dynamique de l'eau                                        | h                           | Pa · s                            |
| Masse volumique de l'eau                                            | ρ                           | kg · m⁻³                          |
| Débit d'air insufflé                                                | Q <sub>G</sub>              | Nm <sup>3</sup> · h <sup>-1</sup> |
| Vitesse de circulation horizontale de l'eau                         | U <sub>C</sub> <sup>1</sup> | cm · s <sup>-1</sup>              |

1 Facteurs spécifiques aux chenaux d'aération

Tableau 1 – Facteurs de dimensionnement et de fonctionnement caractéristiques du transfert d'oxygène.

➤ rendement d'oxygénation standard par mètre d'immersion des diffuseurs (ROs/m), rapport de la quantité d'oxygène transféré et de la quantité d'oxygène insufflé par mètre d'immersion (équation 2) :

$$ROs/m = \frac{k_{L}a_{20} \cdot Cs \cdot V}{10 \cdot h \cdot M_{O_2}}$$

avec :

- $M_{O_2}$ : flux d'oxygène dans l'air insufflé (kg $O_2 \cdot h^{-1}$ )
- h : hauteur d'immersion des diffuseurs (m)

## Nombres sans dimension

Les nombres sans dimension issus des paramètres précédents sont présentés dans le tableau 2. Ils permettent de définir le domaine de validité des relations développées.

De manière à faire apparaître la vitesse superficielle du gaz (U<sub>G</sub>) dans la relation finale, le débit d'air insufflé (Q<sub>G</sub>) est remplacé par U<sub>G</sub> × S.

| Nombre sans dimension                                               | Formule                          |
|---------------------------------------------------------------------|----------------------------------|
| Densité des diffuseurs                                              | $DD = \frac{S_{p}}{S}$           |
| Densité locale des diffuseurs                                       | $DD_{L} = \frac{S_{p}}{S_{a}}$   |
| Diamètre du bassin rapporté à la hauteur d'immersion                | D<br>h                           |
| Rapport de hauteurs d'eau et d'immersion                            | H<br>h                           |
| Surface du bassin rapportée au carré de la hauteur d'immersion      | $\frac{S}{h^2}$                  |
| Rapport de la largeur du chenal à la hauteur d'immersion            | L<br>h                           |
| Angle entre l'axe des agitateurs et le premier module de diffuseurs | Ang                              |
| Rapport des vitesses gaz - liquide                                  | U <sub>C</sub><br>U <sub>G</sub> |
| Nombre de Reynolds                                                  | $Re = \frac{\rho U_G h}{\mu}$    |
| Nombre de Froude                                                    | $Fr = \frac{U_G^2}{gh}$          |
| Nombre de transfert                                                 | $N_T = \frac{k_L ah}{U_G}$       |

Tableau 2 – Nombres sans dimension.

Le calcul des nombres de Reynolds et de Froude est développé en annexe 3.

# RELATIONS PERMETTANT DE PRÉDIRE LE COEFFICIENT DE TRANSFERT D'OXYGÈNE ET LE RENDEMENT D'OXYGÉNATION DES SYSTÈMES D'AÉRATION EN BASSINS CYLINDRIQUES

## Variables caractéristiques

Les variables caractéristiques du transfert d'oxygène en bassins cylindriques sont présentées sur la figure 1 (*cf.* définitions tableau 1, p. 7).

## Domaine de validité

21 mesures effectuées sur 12 sites ont été prises en compte dans l'analyse. Les intervalles de variation des paramètres mesurés sont rapportés dans le tableau 3.

Les intervalles de variation des nombres sans dimension, qui représentent le

domaine de validité des relations développées (équations 4 et 5), sont présentés dans le tableau 4.



| Paramètre | D (m)    | H (m)     | V (m³)    | S (m²)   | S <sub>p</sub> (m²) | S <sub>a</sub> (m²) | U <sub>G</sub> (Nm³ · h⁻ ¹) | k <sub>t</sub> a <sub>20</sub> (h⁻ ¹) | ROs (%/m) |
|-----------|----------|-----------|-----------|----------|---------------------|---------------------|-----------------------------|---------------------------------------|-----------|
| Gamme     | 7,5-14,7 | 2,4 - 6,1 | 108 - 757 | 44 - 170 | 3,4 - 13,1          | 9,2 - 167,6         | 2,2 - 10,6                  | 3,2 - 13,4                            | 3,7 - 5,6 |

Tableau 3 – Intervalles de variation des paramètres mesurés en bassins cylindriques.

| Nombre sans<br>dimension | DD          | DD          | D/h       | H/h         | Re             | Fr × 10°    |
|--------------------------|-------------|-------------|-----------|-------------|----------------|-------------|
| Gamme                    | 0,04 - 0,14 | 0,05 - 0,41 | 1,4 - 5,1 | 1,03 - 1,11 | 1 432 - 12 141 | 8,8 - 220,0 |

Tableau 4 – Domaine de validité des relations développées en bassins cylindriques.

# Expression des performances d'oxygénation en fonction des variables caractéristiques du transfert d'oxygène

Les relations finales permettant de prédire les performances d'oxygénation des systèmes d'aération en fonction des variables caractéristiques du transfert sont présentées ici. Leur développement est détaillé en annexe 1.



Figure 1 – Variables caractéristiques du transfert d'oxygène dans les bassins cylindriques.

➤ Concentration en oxygène à saturation (équation 3) :

 $Cs = 8,840 h^{0,109}$ 

➤ Coefficient de transfert d'oxygène (équation 4) :

 $k_{L}a_{20} = 1,477 \ Q_{G}^{1,037} \ h^{-0,136} \ S^{-1,174} \ S_{p}^{0,042} \ S_{a}^{0,145}$ 

➤ Rendement d'oxygénation standard spécifique (équation 5) :

 $ROs/m = 4,616 Q_{G}^{0,037} h^{-0,026} S^{-0,174} S_{p}^{0,042} S_{a}^{0,145}$ 

Prédiction des capacités d'oxygénation

Relations permettant de prédire Le coefficient de transfert d'oxygène et Le rendement d'oxygénation des systèmes d'aération en chenaux d'aération

## Variables caractéristiques

Les variables caractéristiques du transfert d'oxygène en chenal d'aération sont présentées sur la figure 2. Les chenaux d'aération ont été séparés en deux sous-ensembles en fonction de la répartition des modules de diffuseurs : sur plus de la moitié du radier (Type I) ou sur seulement au plus ½ radier (Type II).

## Domaine de validité

Pour les chenaux de type I, dix-neuf mesures effectuées sur dix sites ont été prises en compte dans l'analyse.

Pour les chenaux de type II, 28 mesures effectuées sur seize sites ont été prises en compte.

Les domaines de validité des relations développées (équations 7 à 10) sont présentés dans le tableau 6.

Le calcul des nombres de Reynolds et de Froude est développé en annexe 3.



Figure 2 – Variables caractéristiques du transfert d'oxygène dans les chenaux d'aération.



| Paramètre | D <sub>in</sub> | D <sub>ext</sub> | h     | L     | V       | S     | S <sub>p</sub> | S <sub>a</sub> | U <sub>G</sub>        | U <sub>c</sub>         | kլa <sub>20</sub> | ROs/m |
|-----------|-----------------|------------------|-------|-------|---------|-------|----------------|----------------|-----------------------|------------------------|-------------------|-------|
|           | (m)             | (m)              | (m)   | (m)   | (m³)    | (m²)  | (m²)           | (m²)           | (m.h <sup>- 1</sup> ) | (cm.s <sup>- 1</sup> ) | (h⁻ ¹)            | (%/m) |
| Gamme     | 6,5 –           | 22,9 -           | 3,7 - | 4,5 - | 1 343 - | 275 – | 14,6 -         | 49,2 -         | 1,6 -                 | 31,5 -                 | 3,0 -             | 4,0 – |
| Type I    | 36,5            | 54.1             | 7,7   | 17,4  | 10 425  | 1 943 | 94,3           | 796,3          | 9,2                   | 47,8                   | 15,0              | 7,5   |
| Gamme     | 0,6 -           | 14,4 -           | 3,7 - | 4,0 - | 452 –   | 116 - | 5,7 -          | 8,6 -          | 2,3 -                 | 25,2 -                 | 2,5 –             | 3,6 - |
| Type II   | 36,5            | 54,1             | 7,6   | 7,9   | 9 860   | 1 312 | 93,1           | 290,5          | 7,2                   | 47,2                   | 8,1               | 6,2   |

Tableau 5 – Intervalles de variation des paramètres mesurés en chenaux d'aération.

| Nombre sans<br>dimension | DD          | DD          | S/h²       | L/h       | H/h         | Ang       | U <sub>c</sub> /U <sub>g</sub> | Re                | Fr * 10°   |
|--------------------------|-------------|-------------|------------|-----------|-------------|-----------|--------------------------------|-------------------|------------|
| Gamme<br>type l          | 0,04 - 0,19 | 0,12 - 0,55 | 8,2 - 72,8 | 0,8 - 3,4 | 1,02 - 1,07 | 0,4 - 1,7 | 3,4 - 20,8                     | 2 016 –<br>18 554 | 4,2 - 94,5 |
| Gamme<br>type II         | 0,03 - 0,9  | 0,18 - 0,67 | 6,0 - 31,8 | 0,8 - 2,0 | 1,04 - 1,08 | 0,4 - 3,6 | 3,5 - 16,2                     | 3 012 -<br>14 441 | 6,2 - 76,0 |

Tableau 6 – Domaine de validité des relations prédictives en chenaux d'aération.

# Expression des performances d'oxygénation en fonction des variables caractéristiques du transfert d'oxygène

> Concentration en oxygène à saturation (équation 6) :

 $Cs = 9,012 h^{0,105}$ 

➤ Chenaux d'aération de type I :

• Coefficient de transfert d'oxygène (équation 7) :

 $k_{L}a_{20} = 0,264 \ Q_{G}^{0,751} \ h^{-0,229} \ S^{-0,918} \ S_{p}^{0,603} \ S_{q}^{0,118} \ L^{-0,913} \ Ang^{0,453} \ U_{C}^{0,735}$ 

Rendement d'oxygénation standard spécifique (équation 8) :

 $ROs/m = 0.828 Q_{G}^{-0.249} h^{-0.123} S^{0.082} S_{D}^{-0.603} S_{D}^{-0.118} L^{-0.913} Ang^{0.453} U_{C}^{-0.735}$ 

➤ Chenaux d'aération de type II :

Coefficient de transfert d'oxygène (équation 9) :

 $k_{L}a_{20} = 3,930 \ Q_{G}^{-0,673} \ h^{0,130} \ S^{-1,076} \ S_{p}^{-0,218} \ S_{a}^{-0,185} \ L^{-0,167} \ Ang^{0,206} \ U_{C}^{-0,112}$ 

Rendement d'oxygénation standard spécifique (équation 10) :

 $ROs/m = 12,433 \ Q_{G}^{-0,327} \ h^{0,235} \ S^{-0,076} \ S_{D}^{0,218} \ S_{d}^{0,185} \ L^{-0,167} \ Ang^{0,206} \ U_{C}^{-0,112}$ 

Prédiction des capacités d'oxygénation

en eau claire des systèmes d'insufflation d'air

# Chapitre 4

# Exemples d'application : dimensionnement d'un système d'aération

## Bassin cylindrique d'une station d'épuration à boues activées de 3 000 EH

L'exemple de dimensionnement du système d'aération présenté ici, équipant le bassin d'une station de 3 000 EH, est basé sur la charge nominale de temps de pluie en situation prochaine reçue par la station pour une semaine type au sens du Fndae n° 25 (2001), soit 200 kg de DBO<sub>5</sub> par jour. En considérant une charge volumique de 0,28 kg DBO<sub>5</sub>.m<sup>-3</sup>.j<sup>-1</sup>, le volume de bassin retenu est de 700 m<sup>3</sup>. La quantité d'oxygène à apporter (apport horaire AHp) est estimée à

60 kg d' $O_2$ .h<sup>-1</sup> en conditions standard (eau claire à 20 °C, P = 1 013 hPa, C = 0 mg.<sup>-1</sup>) (cf. FNDAE n° 25, 2001).

L'équation 4 permet de calculer le débit d'air néces-

saire pour obtenir cet apport horaire en bassin cylindrique, en prenant en compte les caractéristiques du couple bassin/système d'aération choisi. Les différentes étapes à suivre peuvent se résumer ainsi :

- 1. choix d'une hauteur d'eau (H) ;
- 2. calcul de la surface S du bassin (S = V/H) ;

3. choix de la hauteur d'immersion des diffuseurs (h) ;

4. calcul de la concentration en oxygène dissous à saturation du bassin (équation 3) ;

5. calcul du  $k_{\rm l}a_{\rm 20}$  à obtenir (équation 1) ;

6. choix de la densité de diffuseurs (DD) ;

7. calcul de la surface totale des membranes ( $S_p = DD.S$ ) ;

8. choix du diffuseur (de surface unitaire perforée S<sub>i</sub>, *cf.* annexe 2) ;

9. calcul du nombre n de diffuseurs à installer  $(n = S_p/S_i)$ ;

10. choix de la surface aérée S<sub>a</sub> ;

11. calcul de  $Q_G$ (équation 4) et vérification

que le débit d'air par diffuseur est compatible avec le diffuseur choisi ;

12. vérification du domaine de validité des équations (calcul des nombres sans dimension, *cf.* tableau 4 et annexe 3) ;

13. calcul du rendement d'oxygénation standard par mètre d'immersion (équation 5). Exemple d'application pour la station de 3 000 EH

> Cas 1. Diffuseurs disposés en couverture plancher ( $S_a = S$ ) :

1. H = 5,3 m;

2. 
$$S = 132 \text{ m}^2 (D = 13,0 \text{ m})$$
;

3. h = 5 m ;

4. 
$$C_s = 8,840 \times 5,0^{0,109} = 10,54 \text{ mg.}^{-1}$$
;

- 5.  $k_1a_{20} = AHp / (V.Cs) = 60 \times 1000 / (700 \times 10,54) = 8,14 h^{-1};$
- 6. DD = 0,07;
- 7.  $S_{p} = DD.S = 9,2 \text{ m}^{2}$ ;
- 8. Disques de surface percée de 0,04 m<sup>2</sup> ;

9. n =  $S_p/S_i$  = 9,2/0,04 = 231. Le nombre de diffuseurs retenu est de 240 ;

10.  $S_a = S = 132 \text{ m}^2$  (couverture plancher);

11. L'équation 4 donne  $Q_G = 744 \text{ Nm}^3$ . h<sup>-1</sup> ( $U_G = 5,6 \text{ Nm}.h^{-1}$ ), correspondant à un débit d'air à insuffler de 3,1 Nm<sup>3</sup>.h<sup>-1</sup> par diffuseur ;

12. Les nombres sans dimension correspondant au couple bassin d'aération/système d'aération sont reportés dans le tableau suivant ;

13. Le rendement d'oxygénation standard est estimé à 5,4 %.m<sup>-1</sup>.

| DD   | DD   | D/h | H/h  | Re    | Fr × 10° |
|------|------|-----|------|-------|----------|
| 0,07 | 0,07 | 2,6 | 1,06 | 7 809 | 49,9     |

Tableau 7 – Nombres sans dimension pour la station de 3 000 EH (cylindre,  $S_a = S$ ).

Les nombres sans dimension sont bien compris dans le domaine de validité des équations (*cf.* tableau 4).

> Cas 2. Diffuseurs disposés sur 1 module  $(S_a < S)$ 

H = 5,3 m;
 S = 132 m<sup>2</sup> (D = 13,0 m);
 h = 5 m;

- 4.  $Cs = 8,840 \times 5,0^{0,109} = 10,54 \text{ mg.}^{-1}$ ;
- 5.  $k_{L}a_{20} = AHp / (V.Cs) = 60 \times 1000 / (700 \times 10,54) = 8,14 h^{-1};$
- 6. DD = 0,07 ;
- 7.  $S_{p} = DD.S = 9,2 \text{ m}^{2}$ ;
- 8. Disques de surface percée de 0,04 m<sup>2</sup> ;

9. n =  $S_p/S_i$  = 9,2/0,04 = 231. Le nombre de diffuseurs retenu est de 240 ;

10.  $S_a = 50 \text{ m}^2$  (disposition modulaire,  $S_a / S = 0,38$ );

11. l'équation 4 donne  $Q_G = 852 \text{ Nm}^3$ . h<sup>-1</sup> ( $U_G = 6,4 \text{ Nm}.h^{-1}$ ), correspondant à un débit d'air à insuffler de 3,5 Nm<sup>3</sup>.h<sup>-1</sup> par diffuseur ;

12. les nombres sans dimension correspondant au couple bassin d'aération/système d'aération sont reportés dans le tableau suivant ;

13. le rendement d'oxygénation standard est estimé à 4,7 %.m<sup>-1</sup>.

| DD   | DD   | D/h | H/h  | Re    | Fr × 10° |
|------|------|-----|------|-------|----------|
| 0,07 | 0,18 | 2,6 | 1,06 | 8 940 | 65,4     |

Tableau 8 – Nombres sans dimension pour la station de 3 000 EH (cylindre,  $\rm S_a < S).$ 

Les nombres sans dimension sont bien compris dans le domaine de validité des équations (*cf.* tableau 4).

Cet exemple illustre la supériorité de la disposition plancher par rapport à la disposition modulaire, déjà notée dans le Fndae n° 26 (2000). À nombre de diffuseurs donné, les performances d'oxygénation obtenues sont meilleures dans le premier cas.

Par ailleurs, l'effet des paramètres de dimensionnement (hauteur d'eau, densité des diffuseurs, surface aérée...) sur la quantité d'air à injecter, et donc la puissance des surpresseurs à installer, peut être étudié à l'aide des relations obtenues, ce qui permet d'optimiser le dimensionnement du couple bassin/système d'aération.

# Chenal d'aération d'une station d'épuration à boues activées de 9 000 EH

En utilisant les mêmes règles de dimensionnement du système d'aération que l'exemple précédent, la charge reçue par une station de 9 000 EH pour une semaine type au sens du Endae n° 25 (2001) est de 620 kg de DBO<sub>5</sub> par jour. En considérant une charge volumique de 0,28 kg DBO<sub>5</sub>.m<sup>-3</sup>.j<sup>-1</sup>, le volume de bassin retenu est de 2 200 m<sup>3</sup>. La quantité d'oxygène à apporter (apport horaire AHs) est estimée à 180 kg d'O<sup>2</sup>.h<sup>-1</sup> en conditions standard (eau claire à 20 °C, P = 1 013 hPa, C = 0 mg.L<sup>-1</sup>) (cf. Endae n° 25, 2001).

Les équations 7 et 9 permettent de calculer le débit d'air nécessaire pour obtenir cet apport horaire en chenal d'aération respectivement de type I et II, en prenant en compte les caractéristiques du couple bassin/système d'aération choisi. Les différentes étapes à suivre peuvent se résumer ainsi :

- 1. choix d'une hauteur d'eau (H) ;
- 2. calcul de la surface du chenal (S) ;
- 3. choix du diamètre intérieur du chenal (D<sub>in</sub>) ;
- 4. calcul du diamètre extérieur du chenal  $(D_{ext} = \sqrt{(4S/\pi + D_{in}^{-2})})$ ;
- 5. calcul de la largeur du chenal  $(L = (D_{ext} D_{in})/2)$ ;

6. choix d'une hauteur d'immersion des diffuseurs (h) ;

7. calcul de la concentration en oxygène dissous à saturation du bassin (équation 6) ;

- 8. calcul du  $k_{L}a_{20}$  à obtenir (équation 1) ;
- 9. choix de la densité de diffuseurs (DD) ;

10. calcul de la surface totale des membranes (S  $_{\rm p}$  = DD.S) ;

11. choix du diffuseur (de surface unitaire perforée S<sub>i</sub>, *cf.* annexe 2) ;

12. calcul du nombre (n) de diffuseurs à installer (n =  $S_n/S_i$ ) ;

13. choix de la surface aérée  $S_a$ , en fonction du nombre de diffuseurs à installer et des contraintes d'installation (largeur du chenal, dimension standard d'un module, ...);

14. choix de l'angle entre les agitateurs et le premier module d'aération (Ang) ;

15. choix d'une vitesse horizontale de circulation (U\_c) ;

16. calcul de  $Q_G$  (équation 7 ou 9) et vérification que le débit d'air par diffuseur est compatible avec le diffuseur choisi ;

17. vérification du domaine de validité des équations (calcul des nombres sans dimension, *cf.* tableau 6 et annexe 3) ;

18. calcul du rendement d'oxygénation standard (équations 8 ou 10).

Exemple d'application pour la station de 9 000 EH

➤ Cas 1. Chenal d'aération de type I (diffuseurs disposés sur l'ensemble du radier) :

- 1. H = 5,25 m;
- 2.  $S = 419 \text{ m}^2$ ;
- 3.  $D_{in} = 15 \text{ m}$ ;
- 4.  $D_{ext} = 27,5 \text{ m}$ ;
- 5. L = 6,3 m;
- 6. h = 5 m ;
- 7.  $Cs = 10,67 \text{ mg.}^{-1}$ ;
- 8.  $k_1 a_{20} = 180 \times 1000 / (2200 \times 10,67)$ = 7.67 h<sup>-1</sup>;
- 9. DD = 0,07;
- 10.  $S_p = DD.S = 29,3 \text{ m}^2$ ;
- 11. plaques de surface percée de 0,1 m<sup>2</sup>;

12. n = 293, le nombre de diffuseurs retenu est de 300 ;

13. en considérant un module de 2,4 m de large qui couvre la quasi-totalité de la largeur du chenal (L – 0,5 m), on peut proposer 5 modules de 60 diffuseurs, correspondant à une surface aérée de S<sub>a</sub> = 69,3 m<sup>2</sup>;

Prédiction des capacités d'oxygénation

14. Ang = 1,2 rad (70 °);

15.  $U_c = 30 \text{ cm.s}^{-1}$ ;

16. l'équation 5 donne  $Q_G = 2372 \text{ Nm}^3$ . h<sup>-1</sup> ( $U_G = 5,7 \text{ Nm}.h^{-1}$ ), correspondant à un débit d'air à insuffler de 7,9 Nm<sup>3</sup>.h<sup>-1</sup> par diffuseur ;

17. nombres sans dimension ;

18. le rendement d'oxygénation standard est estimé à 5,0 %.m<sup>-1</sup>.

 DD
 DD<sub>1</sub>
 S/h<sup>2</sup>
 L/h
 H/h
 Ang
 U<sub>c</sub>/U<sub>G</sub>
 Re
 Fr × 10°

 0,07
 0,42
 16,8
 1,3
 1,05
 1,2
 5,3
 7.847
 50,4

Tableau 9 – Nombres sans dimension pour la station de 9 000 EH (chenal de Type I).

Les nombres sans dimension sont bien compris dans le domaine de validité des équations (*cf.* tableau 6).

 Cas 2. Chenal d'aération de type II (diffuseurs disposés sur la moitié du radier)

- 1. H = 5,25 m;
- 2.  $S = 419 \text{ m}^2$ ;
- 3.  $D_{in} = 15 \text{ m}$ ;

4. 
$$D_{ext} = 27,5 \text{ m}$$

5. 
$$L = 6,3 \text{ m}$$

6. h = 5 m ;

7. 
$$Cs = 10,67 \text{ mg.}^{-1}$$
;

8. 
$$k_1 a_{20} = 180 \times 1000 / (2200 \times 10,67)$$
  
= 7,67 h<sup>-1</sup>;

9. 
$$DD = 0.07$$
;

10.  $S_p = DD.S = 29,3 \text{ m}^2$ ;

11. plaques de surface percée de 0,1 m<sup>2</sup>;

12. n = 293, le nombre de diffuseurs retenu est de 300 ;

13. en considérant un module de 2,4 m de large qui couvre la quasi-totalité de la largeur du chenal (L – 0,5 m), on peut proposer 5 modules de 60 diffuseurs, correspondant à une surface aérée de S<sub>a</sub> = 69,3 m<sup>2</sup>;

14. Ang = 1,2 rad ;

15.  $U_{c} = 30 \text{ cm.s}^{-1}$ ;

16. l'équation 7 donne  $Q_G = 2.725 \text{ Nm}^3$ . h<sup>-1</sup>, (U<sub>G</sub> = 6,5 Nm.h<sup>-1</sup>) correspondant à un débit d'air à insuffler de 9,1 Nm<sup>3</sup>.h<sup>-1</sup> par diffuseur ;

17. nombres sans dimension ;

18. le rendement d'oxygénation standard est estimé à 4,4 %.m<sup>-1</sup>.

| DD   | DD   | S/h² | L/h | H/h  | Ang | U <sub>c</sub> /U <sub>G</sub> | Re    | $Fr \times 10^9$ |
|------|------|------|-----|------|-----|--------------------------------|-------|------------------|
| 0,07 | 0,42 | 16,8 | 1,3 | 1,05 | 1,2 | 5,3                            | 7 847 | 50,4             |

Tableau 10 – Nombres sans dimension pour la station de 9 000 EH (Chenal de Type II).

Les nombres sans dimension sont bien compris dans le domaine de validité des équations (*cf.* tableau 6).

Ce second exemple montre la meilleure efficacité de transfert d'oxygène dans les chenaux de type I plutôt que de type II. De nouveau, les relations peuvent être utilisées pour optimiser le dimensionnement du couple bassin/système d'aération.



L objectif de cette étude était de développer des relations permettant de prédire le coefficient de transfert d'oxygène et le rendement d'oxygénation en eau claire dans les conditions standard des systèmes d'aération par insufflation d'air, ces relations étant utilisables au stade d'un projet.

L'interprétation des résultats d'essais d'aérateurs en eau claire effectués par le Cemagref, à l'aide de l'analyse dimensionnelle, a permis d'établir trois relations donnant le coefficient de transfert d'oxygène à 20 °C ( $k_1a_{20}$ ), en fonction des paramètres retenus comme caractéristiques du transfert d'oxygène.

En bassins cylindriques, les paramètres caractéristiques sont : le débit d'air insufflé ( $Q_G$ ), la hauteur d'immersion des diffuseurs (h), la surface du bassin (S), la surface des membranes ( $S_p$ ) et la surface aérée ( $S_a$ ).

En chenaux d'aération, les mêmes paramètres ont été retenus, augmentés de la largeur du chenal (L), l'angle entre les agitateurs et le premier module de diffuseurs (Ang) et la vitesse horizontale de circulation de l'eau (U<sub>c</sub>). Par ailleurs, deux types de chenaux ont été considérés suivant la disposition des modules de diffuseurs : sur l'ensemble du radier (type I) ou sur au plus la moitié du radier (type II).

| Type de bassin                | Relation dimensionnelle                                                                                                              |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Bassins cylindriques          | $k_1 a_{20} = 1,477 \ Q_G^{1,037} h^{-0,136} S^{-1,174} S_p^{0,042} S_a^{0,145}$                                                     |
| Chenaux d'aération<br>type l  | $k_{L}a_{20} = 0,264 \ Q_{G}^{0,751} h^{-0,229} S^{-0,918} S_{p}^{0,603} S_{a}^{0,118} L^{-0,913} \text{Ang}^{0,453} U_{C}^{-0,735}$ |
| Chenaux d'aération<br>type II | $k_L a_{20} = 3,930 \ Q_G^{0,673} h^{0,130} S^{-1,076} S_p^{0,218} S_a^{0,185} L^{-0,167} Ang^{0,206} U_C^{-0,112}$                  |

Les relations obtenues sont rapportées dans le tableau suivant.

Des relations permettant d'évaluer le rendement d'oxygénation par mètre d'immersion s'en déduisent (*cf.* tableau suivant).

| Type de bassin                | Relation dimensionnelle                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Bassins cylindriques          | $ROs/m = 4,616 Q_{G}^{0,037} h^{-0,026} S^{-0,174} S_{p}^{0,042} S_{a}^{0,145}$                                       |
| Chenaux d'aération<br>type l  | $ROs/m = 0.828 Q_{G}^{-0.249} h^{-0.123} S^{0.082} S_{p}^{0.603} S_{a}^{0.118} L^{-0.913} Ang^{0.453} U_{C}^{0.735}$  |
| Chenaux d'aération<br>type II | $ROs/m = 12,433 Q_{G}^{-0,327} h^{0,235} S^{-0,076} S_{p}^{0,218} S_{a}^{0,185} L^{-0,167} Ang^{0,206} U_{C}^{0,112}$ |

Ces relations peuvent être utilisées lors du dimensionnement d'un système d'aération, pour des formes de bassin conventionnelles (chenaux et bassins cylindriques). Elles permettent d'optimiser le dimensionnement du couple bassin/système d'aération.

Elles constituent également un outil utilisable pour l'évaluation des apports horaires et des rendements d'oxygénation des propositions remises par les constructeurs.

Cependant, cette utilisation doit impérativement être restreinte aux bassins «classiques» tels que ceux constituant la base de données. Ces relations ne sauraient être appliquées à des systèmes d'aération dont la conception et le dimensionnement seraient particulièrement innovants ou atypiques. De plus, ces relations ne sont applicables que pour des gammes de nombres sans dimension indiquées dans les tableaux 4 et 6.

Enfin, les relations proposées sont appelées à évoluer parallèlement aux résultats de mesures de performances d'aération constituant les bases de données.



LISTE DES ANNEXES

- Annexe 1 L'analyse dimensionnelle
- Annexe 2 Calcul de la surface des poreux
- Annexe 3 Calcul des nombres sans dimension

#### Annexe 1 – L'analyse dimensionnelle

#### • Principe de la méthode

L'analyse dimensionnelle permet de représenter un phénomène physique à l'aide d'une relation adimensionnelle déduite de données expérimentales. Elle fournit une loi fonction des paramètres du système sans que l'influence de chaque paramètre soit étudiée individuellement.

L'analyse dimensionnelle repose sur le théorème de Vaschy-Buckingham (théorème des  $\Pi$ ), qui s'énonce de la façon suivante : toute fonction X = f(x) de variables indépendantes x peut se mettre sous la forme f( $\Pi$ ) = 0 dans laquelle les  $\Pi_i$  sont des nombres sans dimension indépendants. Si on dénombre p – 1 variables indépendantes x et une variable dépendante X, et si q est le nombre d'unités fondamentales, il est possible de former p – q nombres sans dimension.

L'analyse dimensionnelle consiste en fait à relier entre eux les facteurs influençant le phénomène étudié à l'aide des nombres adimensionnels, sous la forme suivante :

$$k \prod_{i=1}^{i=n} G_i^{\alpha_i} = 1$$
(A1)

avec :

k : constante ;

G<sub>i</sub>. : nombres sans dimension ;

 $\alpha_i$ : exposants numériques.

Si  $G_1$  est le nombre sans dimension formé à partir de la variable dépendante X recherchée, l'équation 1 peut se mettre sous la forme suivante :

$$\prod_{i=1}^{i=n} G_{i}^{\alpha_{i}} = \frac{\prod_{i=2}^{i=2}}{k}$$

d'où :

$$\prod_{i=1}^{n} = K \prod_{i=2}^{n} G_i^{-\alpha_i / \alpha_1} = K \prod_{i=2}^{n} G_i^{e_i}$$

(A2)

avec :

 $K = (1/k)^{1/\alpha^1}$  : constante ;

 $e_i = -\alpha_i / \alpha_1$ : exposants numériques.

L'application du théorème des Π nécessite la connaissance *a priori* des paramètres influençant le phénomène étudié. Elle s'effectue en plusieurs étapes.

Élaboration de la liste des paramètres influençant le phénomène étudié : à l'exception du paramètre recherché (k<sub>i</sub>a dans le cas de l'insufflation d'air), les paramètres considérés doivent être indépendants entre eux et significatifs (c'est-à-dire variables d'une expérience à l'autre) (Zlokarnik, 1998). De plus, une liste n'est valide que pour une géométrie donnée. Les bassins cylindriques ont donc été différenciés des chenaux d'aération.

26

<sup>2</sup> Génération des nombres adimensionnels : les nombres adimensionnels considérés peuvent être générés à l'aide d'une matrice regroupant les grandeurs des paramètres influents (matrice des dimensions). Le choix des nombres sans dimension n'est pas unique. De manière générale, les nombres adimensionnels usuels (Reynolds, Froude...) sont recherchés.

Il s'agit, en fait, d'une procédure itérative. La constante k et les exposants  $\alpha_i$  de l'équation adimensionnelle sont obtenus par régression non linéaire. Les nombres sans dimension (et donc les paramètres) retenus pour expliquer un phénomène sont ceux qui donnent la meilleure corrélation entre valeurs déduites de la relation adimensionnelle et valeurs mesurées. Le nombre minimum de nombres adimensionnels fournissant une corrélation acceptable est retenu.

#### • Paramètres caractéristiques et nombres adimensionnels en insufflation d'air fines bulles

Les bassins cylindriques ont été différenciés des chenaux d'aération afin d'introduire des nombres adimensionnels propres à chaque géométrie considérée. Les facteurs de conception et de fonctionnement retenus comme caractéristiques du transfert d'oxygène en bassins d'aération équipés de diffuseurs fines bulles sont rapportés dans les paragraphes suivants.

#### Bassins cylindriques

La figure 1 (p. 16) et le tableau A1 présentent les paramètres caractéristiques retenus en bassins cylindriques.

|                            | Paramètre                                                         | Symbole          | Dimension | Unité usuelle        |
|----------------------------|-------------------------------------------------------------------|------------------|-----------|----------------------|
| Variable dépendante        | Coefficient de transfert d'oxygène                                | k <sub>i</sub> a | T- 1      | h- 1                 |
| Variables                  | Surface du bassin                                                 | S                | L2        | m <sup>2</sup>       |
| géométriques               | Surface totale des membranes <sup>1</sup>                         | Sp               | L2        | m²                   |
|                            | Surface couverte par les modules de<br>diffuseurs (Surface aérée) | Sa               | L2        | m <sup>2</sup>       |
|                            | Hauteur d'eau                                                     | Н                | L         | m                    |
|                            | Hauteur d'immersion                                               | h                | L         | m                    |
| Variables                  | Débit d'air insufflé                                              | Q <sub>G</sub>   | L3T- 1    | Nm³.h <sup>- 1</sup> |
| cinématiques               | Accélération de la pesanteur                                      | g                | LT- 2     | m.s <sup>-2</sup>    |
| Variables caractérisant    | Viscosité dynamique de l'eau                                      | h                | ML- 1T- 1 | Pa.s                 |
| les propriétés des fluides | Masse volumique de l'eau                                          | ρ                | ML- 3     | kg.m <sup>-3</sup>   |

<sup>1</sup> Pour le calcul de la surface des membranes, se reporter à l'annexe 2.

Tableau A1 – Paramètres caractéristiques du transfert d'oxygène dans les bassins d'aération.

Remarques : le diamètre des bulles d'air, considéré comme invariant, n'est pas pris en compte dans l'analyse. La diffusivité de l'oxygène est prise en compte dans le coefficient de transfert côté liquide k<sub>l</sub>.

À partir des dix variables et de leurs trois dimensions (M, L et T), il est possible d'établir une relation entre sept nombres sans dimension. Les nombres retenus sont rapportés dans le tableau A2.

De manière à faire apparaître la vitesse superficielle du gaz (U<sub>G</sub>) dans la relation finale, le débit d'air insufflé (Q<sub>G</sub>) est remplacé par U<sub>G</sub> × S.

| Nombre                                            | Symbole        | Relation                            | Signification physique                                                                                      |
|---------------------------------------------------|----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Densité des diffuseurs                            | DD             | S <sub>P</sub><br>S                 | Rapport de la surface de poreux à la surface du bassin                                                      |
| Densité locale des diffuseurs                     | DD             | S <sub>P</sub><br>S <sub>a</sub>    | Rapport de la surface de poreux à la surface aérée                                                          |
| Diamètre du bassin rapporté<br>à la hauteur d'eau | -              | D<br>h                              | Rapport du diamètre du bassin à la hauteur d'immersion des diffuseurs                                       |
| Rapport de hauteurs d'eau<br>et d'immersion       |                | H<br>h                              | Rapport de la hauteur d'eau à la hauteur d'immersion des<br>diffuseurs                                      |
| Nombre de Reynolds                                | Re             | $\frac{\rho \cup_{G} h}{\mu}$       | Rapport de l'énergie cinétique de la colonne d'eau au<br>travail des forces de friction dues à la viscosité |
| Nombre de Froude                                  | Fr             | $\frac{U_G^2}{gh}$                  | Rapport de l'énergie cinétique du volume d'eau à son<br>énergie potentielle                                 |
| Nombre de transfert                               | N <sub>T</sub> | k <sub>l</sub> ah<br>U <sub>G</sub> | Rapport de la vitesse de transfert dans la colonne d'eau sur<br>la vitesse du gaz                           |

Tableau A2 – Nombres sans dimension retenus à l'issue de l'analyse dimensionnelle.

### 28

Le coefficient de transfert d'oxygène  $k_la$ , qui est la variable dépendante recherchée, est compris dans le nombre sans dimension nommé nombre de transfert  $N_r$ .

La relation adimensionnelle donnant le nombre de transfert s'écrit alors (cf. équation A2) :

$$N_{T} = K(DD)^{e_{1}} (DD_{L})^{e_{2}} \left(\frac{D}{h}\right)^{e_{3}} (Re)^{e_{5}} (Fr)^{e_{6}}$$
(A3)

avec K,  $e_1$ ,  $e_2$ ,  $e_3$ ,  $e_4$ ,  $e_5$ ,  $e_6$ ,  $e_7$  = constantes.

Le coefficient de transfert d'oxygène peut se mettre sous la forme :

$$k_{L}a_{20} = K \frac{U_{G}}{h} (DD)^{e_{1}} (DD_{L})^{e_{2}} \left(\frac{D}{h}\right)^{e_{3}} \left(\frac{H}{h}\right)^{e_{4}} \left(\frac{\rho U_{G}h}{\mu}\right)^{e_{5}} \left(\frac{U_{G}^{2}}{gh}\right)^{e_{6}}$$
(A4)

#### Chenaux d'aération

Pour rendre compte de l'effet de la vitesse horizontale sur le transfert d'oxygène, les chenaux d'aération ont été séparés en deux sous-ensembles en fonction de la répartition des modules de diffuseurs : sur l'ensemble du radier (Type I) ou sur seulement au plus ½ radier (Type II), comme présenté figure 3 et dans le tableau A3.

|                            | Paramètre                                                         | Symbole          | Dimension         | Unité usuelle                     |
|----------------------------|-------------------------------------------------------------------|------------------|-------------------|-----------------------------------|
| Variable dépendante        | Coefficient de transfert d'oxygène                                | k <sub>i</sub> a | T- 1              | h <sup>- 1</sup>                  |
| Variables                  | Surface du bassin                                                 | S                | L2                | m <sup>2</sup>                    |
| géométriques               | Surface totale des membranes <sup>1</sup>                         | S <sub>p</sub>   | L2                | m <sup>2</sup>                    |
|                            | Surface couverte par les modules de<br>diffuseurs (Surface aérée) | S <sub>a</sub>   | L2                | m²                                |
|                            | Largeur du chenal                                                 | L                | L                 | m                                 |
|                            | Angle axes des agitateurs – premier<br>module de diffuseurs       | Ang              | -                 | rad                               |
|                            | Hauteur d'eau                                                     | Н                | L                 | m                                 |
|                            | Hauteur d'immersion                                               | h                | L                 | m                                 |
| Variables                  | Débit d'air insufflé                                              | Q <sub>G</sub>   | L3T- 1            | Nm <sup>3</sup> .h <sup>- 1</sup> |
| cinématiques               | Vitesse de circulation horizontale de l'eau                       | U <sub>c</sub>   | LT- 1             | cm.s <sup>-1</sup>                |
|                            | Accélération de la pesanteur                                      | g                | LT- 2             | m.s <sup>-2</sup>                 |
| Variables caractérisant    | Viscosité dynamique de l'eau                                      | h                | ML- 1 T- 1        | Pa.s                              |
| les propriétés des fluides | Masse volumique de l'eau                                          |                  | M.L <sup>-3</sup> | kg.m⁻³                            |

<sup>1</sup> Pour le calcul de la surface des membranes, se reporter à l'annexe 2.

Tableau A3 – Paramètres caractéristiques du transfert d'oxygène dans les chenaux d'aération.

Pour les chenaux, dix nombres sans dimension peuvent être formés (13 variables – 3 dimensions).

Le tableau A4 présente les nombres sans dimension retenus.

| Nombre                                                      | Symbole        | Relation                            | Signification physique                                                                                      |
|-------------------------------------------------------------|----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Densité des diffuseurs                                      | DD             | S <sub>P</sub><br>S                 | Rapport de la surface de poreux à la surface du bassin                                                      |
| Densité locale des diffuseurs                               | DD             | S <sub>P</sub><br>S <sub>a</sub>    | Rapport de la surface de poreux à la surface aérée                                                          |
| Surface du bassin rapportée au<br>carré de la hauteur d'eau | -              | $\frac{S}{h^2}$                     | Rapport de la surface du bassin à la section carrée<br>équivalente                                          |
| Rapport de L à la hauteur<br>d'immersion                    | -              | L<br>Fi                             | Rapport de la largeur du chenal à la hauteur d'immersion                                                    |
| Rapport de hauteurs d'eau et<br>d'immersion                 |                | H<br>h                              | Rapport de la hauteur d'eau à la hauteur d'immersion                                                        |
| Angle axes des agitateurs –<br>premier module de diffuseurs | -              | Ang                                 |                                                                                                             |
| Nombre de Reynolds                                          | Re             | $\frac{\rho U_{G}h}{\mu}$           | Rapport de l'énergie cinétique de la colonne d'eau au<br>travail des forces de friction dues à la viscosité |
| Nombre de Froude                                            | Fr             | $\frac{U_G^2}{gh}$                  | Rapport l'énergie cinétique du volume d'eau à son éner-<br>gie potentielle                                  |
| Rapport des vitesses gaz<br>- liquide                       | -              | U <sub>C</sub><br>U <sub>G</sub>    | Rapport de la vitesse de circulation horizontale du liquide<br>à la vitesse du gaz                          |
| Nombre de transfert                                         | N <sub>T</sub> | k <sub>l</sub> ah<br>U <sub>G</sub> | Rapport de la vitesse de transfert dans la colonne d'eau<br>sur la vitesse du gaz                           |

Tableau A4 – Nombres sans dimension retenus à l'issue de l'analyse dimensionnelle.

La relation adimensionnelle s'écrit alors (cf. équation 2) :

$$N_{T} = K(DD)^{e_{1}} (DD_{L})^{e_{2}} \left(\frac{S}{h^{2}}\right)^{e_{4}} \left(\frac{H}{h}\right)^{e_{5}} Ang^{e_{6}} \left(\frac{U_{C}}{U_{G}}\right)^{e_{7}} (Re)^{e_{8}} (Fr)^{e_{9}}$$
(A5)

avec K,  $e_1$ ,  $e_2$ ,  $e_3$ ,  $e_4$ ,  $e_5$ ,  $e_6$ ,  $e_7$ ,  $e_8$ ,  $e_9 e_{10} = constantes$ .

Le coefficient de transfert d'oxygène peut se mettre sous la forme :

$$k_{L}a_{20} = K \frac{U_{G}}{h} (DD)^{e_{1}} (DD_{L})^{e_{2}} \left(\frac{S}{h^{2}}\right)^{e_{3}} \left(\frac{L}{h}\right)^{e_{4}} \left(\frac{H}{h}\right)^{e_{5}} Ang^{e_{6}} \left(\frac{U_{c}}{U_{G}}\right)^{e_{7}} \left(\frac{\rho U_{G}h}{\mu}\right)^{e_{8}} \left(\frac{U_{G}^{2}}{gh}\right)^{e_{9}}$$
(A6)

#### • Relations permettant de prédire les performances d'oxygénation en eau claire

#### Bassins cylindriques

| Concentration en oxygène à saturation       | Cs = 8,840 h <sup>0,109</sup>                                                            |
|---------------------------------------------|------------------------------------------------------------------------------------------|
| Coefficient de transfert d'oxygène          | $k_1 a_{20} = 1,477 \ Q_G^{1,037} \ h^{-0,136} \ S^{-1,174} \ S_p^{0,042} \ S_a^{0,145}$ |
| Rendement d'oxygénation standard spécifique | $ROs/m = 4,616 Q_{G}^{0,037} h^{-0,026} S^{-0,174} S_{p}^{0,042} S_{a}^{0,145}$          |

Les coefficients de transfert obtenus à l'aide de la relation de prédiction sont comparés à ceux mesurés sur la figure A1.



Figure A1 – Comparaison des coefficients de transfert d'oxygène mesurés et calculés.

L'écart relatif est en moyenne de 2,7 %, avec une valeur maximale de 7,2 %. L'adéquation entre valeur calculée et valeur mesurée est donc très satisfaisante.

Prédiction des capacités d'oxygénation

en eau claire des systèmes d'insufflation d'air

#### Chenaux d'aération

| Concentration en oxygène<br>à saturation | $Cs = 9,012 h^{0,105}$                                                                                                                                                                                                                     |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coefficient de transfert                 | Type I<br>$k_{L}a_{20} = 0,264 \ Q_{G}^{0,751} h^{-0,229} S^{-0,918} S_{p}^{0,603} S_{a}^{0,118} L^{-0,913} Ang^{0,453} U_{C}^{0,735}$                                                                                                     |
| d´oxygène                                | Type II $k_{l}a_{20} = 3,930 \ Q_{G}^{-0,673} h^{0,130} \ S^{-1,076} \ S_{p}^{-0,218} \ S_{a}^{-0,185} \ L^{-0,167} \ Ang^{0,206} \ U_{C}^{-0,112}$                                                                                        |
| Rendement d'oxygénation                  | Type I<br>ROs/m = 0,828 $Q_{G}^{-0,249} h^{-0,123} S^{0,082} S_{p}^{0,603} S_{a}^{0,118} L^{-0,913} Ang^{0,453} U_{C}^{0,735}$                                                                                                             |
| sianaara specilique                      | Type II<br>ROs/m = 12,433 Q <sub>G</sub> <sup>-0,327</sup> h <sup>0,235</sup> S <sup>-0,076</sup> S <sub>o</sub> <sup>0,218</sup> S <sub>o</sub> <sup>0,185</sup> L <sup>-0,167</sup> Ang <sup>0,206</sup> U <sub>C</sub> <sup>0,112</sup> |

Les coefficients de transfert obtenus à l'aide des relations sont comparés à ceux mesurés sur la figure A2.



Figure A2 – Comparaison des coefficients de transfert d'oxygène mesurés et calculés.

Les écarts relatifs sont en moyenne de 2,5 % (Type I) et 3,3 % (Type II), avec une valeur maximale de 7,3 % (Type I) et 10,6 % (Type II).

## Annexe 2 – Calcul de la surface des poreux

La surface des poreux est calculée comme le produit du nombre de diffuseurs par la surface perforée de chaque diffuseur.

La surface perforée est fonction de la forme des diffuseurs.

#### Surface perforée des disques

La surface perforée d'un disque s'écrit :

$$S_{perf} = \frac{\pi}{4} (D_d^2 - D_{np}^2)$$



Surface perforée des tubes La surface perforée d'un tube s'écrit :

$$S_{perf} = (\pi D_t - I_{np})L_t$$

La surface perforée d'une plaque s'écrit :

Surface perforée des plaques

$$S_{perf} = 2 L_p l_p$$



en eau claire des systèmes d'insufflation d'air

## Annexe 3 – Calcul des nombres sans dimension

Données numériques :

| Masse volumique de l'eau à 20 °C       | $\rho = 998$    | kg.m <sup>-3</sup> |
|----------------------------------------|-----------------|--------------------|
| Viscosité cinématique de l'eau à 20 °C | $\mu = 10^{-3}$ | Pa.s               |
| Accélération de la pesanteur           | g = 9,81        | m.s <sup>-1</sup>  |

Nombre de Reynolds :

$$Re = \frac{\rho U_G h}{\mu} = \frac{998 \ U_G h}{0,001 \times 3.600} = 277,22 \ U_G h$$

avec  ${\rm U}_{\rm G}$  en m.h^{-1} et h en m.

Nombre de Froude :

$$Fr = \frac{U_G^2}{gh} = \frac{U_G^2}{3600^2 \times 9.81h} = 2.8 \times 10^{-5} \frac{U_G^2}{h}$$

avec  ${\rm U}_{\rm G}$  en m.h^-  $^{_1}$  et h en m.

33

#### Références bibliographiques

Capela S., Roustan M., and Héduit A., 2001, Transfer Number in fine bubble diffused aeration systems. *Wat. Sci. Tech.*, 43(11), pp. 145-152.

Deronzier G., Duchène Ph. and Héduit A., 1998, Optimisation of oxygen transfer in clean water by fine bubble diffused air system and separate mixing in aeration ditches, *Wat. Sci. Tech.*, 3, pp. 35-42.

Duchène Ph., Cotteux E., and Capela S., 2001, Applying fine bubble aeration to small aeration tanks *Wat. Sci. Tech.*, 44(2-3), pp. 203-210.

Duchène, P. and Héduit, A.,2000, *Expérience et interprétation de mesures de performances d'aération en boues activées*, Réseau Environnement 2000, 23° Symposium sur les eaux usées.

FNDAE n° 25, 2001, Traitement de l'azote dans les stations d'épuration biologique des petites collectivités.

FNDAE n° 26, 2002, Insufflation d'air fines bulles pour les boues activées en petites collectivités : influence de la forme du bassin et de la répartition des diffuseurs sur l'efficacité du transfert d'oxygène.

prEN 12255-15, 2004, European Standard : Wastewater treatment plants – Part 15 : Measurement of the oxygen transfer in clean water in activated sludge aeration tanks. (DRAFT : prEN 12255-15, December 1999).

Zlokarnik, M., 1998, Comparaison de différents systèmes d'aération et méthodes de dimensionnement, Journées d'études gaz-liquide, INSA Toulouse: 7/1-7/13.

#### Nomenclature

| AH                             | Apport horaire d'oxygène (MT-1)                                                           |
|--------------------------------|-------------------------------------------------------------------------------------------|
| AHp                            | Apport horaire d'oxygène de pointe (MT <sup>-1</sup> )                                    |
| AHs                            | Apport horaire d'oxygène dans les conditions standard (MT-1)                              |
| ASB                            | Apport spécifique brut (L <sup>-</sup> <sup>2</sup> T <sup>2</sup> )                      |
| Ang                            | Angle entre l'axe des agitateurs et le premier module de diffuseurs                       |
| Cs                             | Concentration de saturation en oxygène à 20 °C (M.L <sup>-3</sup> )                       |
| D                              | Diamètre du bassin (L)                                                                    |
| $D_{ext}$                      | Diamètre extérieur du chenal (L)                                                          |
| D <sub>in</sub>                | Diamètre intérieur du chenal (L)                                                          |
| DD                             | Densité des diffuseurs                                                                    |
| DD                             | Densité locale des diffuseurs                                                             |
| Fr                             | Nombre de Froude                                                                          |
| g                              | Accélération de la pesanteur (LT-2)                                                       |
| h                              | Hauteur d'immersion des diffuseurs (L)                                                    |
| Н                              | Hauteur d'eau (L)                                                                         |
| k <sub>l</sub> a               | Coefficient de transfert d'oxygène (T <sup>- 1</sup> )                                    |
| k <sub>l</sub> a <sub>20</sub> | Coefficient de transfert d'oxygène à 20°C (T-1)                                           |
| L                              | Largeur du chenal (L)                                                                     |
| $M_{O2}$                       | Flux d'oxygène dans l'air insufflé (M.T-1)                                                |
| N <sub>T</sub>                 | Nombre de transfert                                                                       |
| $Q_{_{\rm G}}$                 | Débit d'air insufflé (L <sup>3</sup> T <sup>-1</sup> )                                    |
| Re                             | Nombre de Reynolds                                                                        |
| ROs/m                          | Rendement d'oxygénation standard par mètre d'immersion des diffuseurs (L <sup>- 1</sup> ) |
| S                              | Surface du bassin (L²)                                                                    |
| S <sub>a</sub>                 | Surface couverte par les modules de diffuseurs (L <sup>2</sup> )                          |
| Sp                             | Surface totale des membranes (L²)                                                         |
| $U_{c}$                        | Vitesse de circulation horizontale de l'eau (LT-1)                                        |
| U <sub>G</sub>                 | Vitesse superficielle du gaz (LT- 1)                                                      |
| $\vee$                         | Volume de liquide (L³)                                                                    |
| h                              | Viscosité dynamique de l'eau (ML <sup>- 1</sup> T <sup>- 1</sup> )                        |
| ρ                              | Masse volumique de l'eau (ML <sup>- 3</sup> )                                             |



Les systèmes d'insufflation d'air en fines bulles équipant des bassins d'aération de taille et de géométrie variées connaissent depuis les années 90 un fort développement. Cependant, à ce jour, les performances du transfert d'oxygène prévues au stade des projets prennent peu ou pas en compte les conditions hydrodynamiques spécifiques à chaque site. L'interprétation des résultats d'essais d'aérateurs en eau claire effectués par le Cemagref, à l'aide de l'analyse dimensionnelle, a permis d'établir des relations donnant le coefficient de transfert d'oxygène à 20 °C (k<sub>L</sub>a<sub>20</sub>) et le rendement d'oxygénation standard par mètre d'immersion (ROs/m), en fonction des paramètres caractéristiques du transfert d'oxygène.

En bassins cylindriques (21 mesures), les paramètres caractéristiques sont : le débit d'air insufflé ( $Q_G$ ), la hauteur d'immersion des diffuseurs (h), la surface du bassin (S), la surface des membranes (S) et la surface aérée (S).

En chenaux d'aération (47 mesures), les mêmes paramètres ont été reténus, additionnés de la largeur du chenal (L), de l'angle entre les agitateurs et le premier module de diffuseurs (Ang) et de la vitesse horizontale de circulation de l'eau (U<sub>c</sub>). Deux types de chenaux ont été considérés suivant la disposition des modules de diffuseurs : sur plus de la moitié du radier (type I) ou sur au plus la moitié du radier (type II).

Le présent document propose des définitions des variables caractéristiques du transfert d'oxygène en insufflation d'air fines bulles, des critères et des nombres sans dimension caractérisant les performances d'oxygénation des systèmes d'aération. Les relations permettant de prédire les coefficients de transfert d'oxygène et les rendements d'oxygénation en fonction des facteurs précités sont présentées. Enfin, des exemples illustrent l'application de ces relations au dimensionnement des systèmes d'aération.

Mots-clefs : analyse dimensionnelle, épuration des eaux résiduaires, fines bulles, modèle, transfert d'oxygène.

#### Predicting aeration capacities of fine pore aeration systems in clean water



Since the 1990's, aeration tanks of various sizes and geometry have been increasingly equipped with EPDM membrane diffusers. Oxygenation performance prediction, at a project stage, is however still relatively inaccurate, as it fails to take into account hydrodynamic conditions of the site under study. As a substantial number of oxygenation, performance measurements of fine bubble aeration systems has been performed by the Cemagref, the establishment of relationships between the oxygen transfer and the parameters affecting it has been considered using dimensional analysis. Relationships have been established between the oxygen transfer coefficient at 20 °C ( $k_1a_{20}$ ) and standard oxygen transfer efficiency per meter of submergence (ROs/m) and the parameters characteristic of the oxygen mass transfer.

In cylindrical tanks (21 measurements), characteristics parameters are the following: the air flow rate ( $Q_G$ ), the depth of submergence (h), the tank surface area (S), the total membrane area ( $S_a$ ) and the aerated surface ( $S_a$ ).

In circular ditches (47 measurements), the same parameters have been retained, complemented with the tank width (the angle between the mixers and the first grid of diffusers (Ang) and the horizontal velocity of water ( $U_c$ ). In addition, the annular ditches have been differentiated according to the tank coverage: tank coverage higher than 50 % of the surface area (Type I) or at the maximum 50 % of the area (Type II).

The specific variables of the oxygen in fine bubble aeration as well as the dimensionless numbers characterising the oxygenation capacities of aeration systems are defined. The relationships predicting oxygen transfer coefficients and oxygen transfer efficiencies in function of the pre-cited factors are then presented. Finally, some examples illustrate the application of the relationships to aeration system design.

Keywords : dimensional analysis, wastewater treatment, fines bubbles, model, oxygen transfer

36

Les documents techniques du FNDAE Désignation de l'ouvrage

| 1        | L'exploitation des lagunages naturels                                                                             | 1985 |
|----------|-------------------------------------------------------------------------------------------------------------------|------|
| 2        | Définition et caractéristiques techniques de fonctionnement et domaine d'emploi pour les                          | 1986 |
|          | appareils de désinfection                                                                                         |      |
| 3        | Manuel pratique pour le renforcement et l'étanchéité des réservoirs d'eau potable                                 | 1986 |
| 4        | Élaboration des dispositions locales de secours pour la distribution d'eau potable                                | 2002 |
| 5        | Les stations d'épuration adaptées aux petites collectivités                                                       | 1986 |
| 5 bis    | Stations d'épuration – Dispositions constructives pour améliorer leur fonctionnement et faciliter                 | 2002 |
| = 22 bis | leur exploitation                                                                                                 |      |
| 6        | Les bassins d'orages sur les réseaux d'assainissement                                                             | 1988 |
| 7        | Le génie civil des bassins de lagunage naturel                                                                    | 1990 |
| 8        | Guide technique sur le foisonnement des boues activées                                                            | 1990 |
| 9        | Les systèmes de traitement des boues des petites collectivités                                                    | 1990 |
| 10       | Élimination de l'azote dans les stations d'épuration biologiques des petites collectivités                        | 1990 |
| 11       | L'eau potable en zone rurale – Adaptation et modernisation des filières de traitement. Réédition                  | 1992 |
| 12       | Application de l'énergie photovoltaïque à l'alimentation en eau potable des zones rurales                         | 1996 |
| 13       | Lutte contre les odeurs des stations d'épuration                                                                  | 1993 |
| 14       | Les procédés membranaires pour le traitement de l'eau                                                             | 2002 |
| 15       | Financement du renouvellement des réseaux d'adduction d'eau potable                                               | 1993 |
| 16       | La gestion collective de l'assainissement autonome – Bilan des premières expériences                              | 1993 |
| 17       | Les nouvelles techniques de transport d'effluents                                                                 | 1996 |
| 18       | La décantation lamellaire des boues activées                                                                      | 1994 |
| 19       | Guide sur la gestion de la protection des captages d'eau potable dans les vallées alluviales                      | 1997 |
| 20       | Connaissance et maîtrise des aspects sanitaires de l'épandage des boues d'épuration<br>des collectivités locales  | 1998 |
| 21       | Études préalables au zonage d'assainissement. Guide méthodologique à l'usage des techniciens                      | 1998 |
| 22       | Filières d'épuration adaptées aux petites collectivités                                                           | 1998 |
| 23       | Application des énergies renouvelables à la potabilisation et à l'épuration des eaux                              | 1999 |
| 24       | Performances des systèmes de traitement biologique des graisses                                                   | 2001 |
| 25       | Traitement de l'azote dans les stations d'épuration des petites collectivités                                     | 2002 |
| 26       | Insufflation d'air fines bulles. Application aux stations d'épuration en boues activées des petites collectivités | 2002 |
| 27       | Guide méthodologique d'études anti-bélier pour les réseaux d'eau potable                                          | 2002 |
| 28       | Étude des prétraitements compacts basés uniquement sur le tamisage fin.                                           | 2004 |
|          | Cas du traitement des eaux résiduaires urbaines ou domestiques.                                                   |      |
| 29       | Traitement du phosphore dans les petites stations d'épuration à boues activées.                                   | 2004 |
| 30       | Traitement des matières de vidange en milieu rural. Évaluation technico-économique des filières                   | 2004 |
| 31       | Prédiction des capacités d'oxygénation en eau claire des systèmes d'insufflation d'air                            | 2004 |

| 0       |                                                                                                                 |      |
|---------|-----------------------------------------------------------------------------------------------------------------|------|
| HS 4    | l<br>Élimination des nitrates des eaux potables                                                                 | 2002 |
| HS 5    | Les différents procédés de stockage des boues d'épuration avant valorisation en agriculture                     | 1993 |
| HS 9    | Les pollutions accidentelles des eaux continentales                                                             | 1995 |
| HS10    | Le renouvellement des réseaux d'eau potable                                                                     | 1994 |
| HS11    | L'utilisation des eaux usées épurées en irrigation                                                              | 1998 |
| HS 12   | La dégradation de la qualité de l'eau potable dans les réseaux                                                  | 2002 |
| HS13    | Le contrôle et l'entretien des installations d'assainissement non collectif. État de la réglementation et bilan | 2000 |
|         | des services publics de gestion des installations.                                                              |      |
| INV90NA | Situation de l'alimentation en eau potable et de l'assainissement dans les communes rurales en 1990.            | 1993 |
|         | Synthèse nationale 1990                                                                                         |      |
| INV90DE | Synthèse nationale et résultats départementaux 1990                                                             | 1993 |
| INV95NA | Situation de l'alimentation en eau potable et de l'assainissement dans les communes rurales en 1995.            | 1997 |
|         | Synthèse nationale 1995                                                                                         |      |
| INV95DE | Synthèse nationale et résultats départementaux 1995                                                             | 1997 |
| INVOODE | Synthèse nationale et résultats départementaux 2000                                                             | 2004 |
|         |                                                                                                                 |      |
|         |                                                                                                                 |      |